
Self-similarity of quasilattices in two dimensions. II. The 'non-Bravais-type' n-gonal quasilattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 205

(http://iopscience.iop.org/0305-4470/22/2/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 22 (1989) 205-218. Printed in the U K  

Self-similarity of quasilattices in two dimensions: 11. 
The ‘non-Bravais- type’ n -gonal quasilat t ice 

Komajiro Niizeki 
Department of Physics, Tohoku University, Sendai, Japan 

Received 28 June 1988 

Abstract. We present a systematic method of dividing an n-gonal lattice into identical 
sublattices which are also n-gonal lattices. A ‘non-Bravais-type’ n-gonal quasilattice in 
two dimensions is constructed with the projection method by assigning windows with 
different shapes, sizes and/or orientations to the sublattices; the symmetries and the 
orientations of the windows are determined by the relative point symmetries of the 
sublattices to the n-gonal lattice, and windows assigned to equivalent sublattices differ 
from one another only in their orientations. The sublattices are transformed among 
themselves by a volume-conserving linear transformation induced by a (complex) PV unit 
in the n-cyclotomic field. A necessary and sufficient condition for a PV unit to be a 
(complex) self-similarity ratio of a ‘non-Bravais-type’ quasilattice is presented. It is shown 
that every ‘non-Bravais-type’ n-gonal quasilattice has a self-similarity characterised by a 
PV unit. 

1. Introduction 

We have shown in a previous paper (Niizeki 1989, hereafter referred to as I) that an 
n-gonal quasilattice in two-dimensions ( 2 ~ )  has a self-similarity for every even n (as). 
The self-similarity is characterised by a complex PV unit T in the n-cyclotomic field; 
on the inflation, the quasilattice is expanded by 171 and, subsequently, rotated by arg T, 
The n-gonal quasilattice is obtained with the projection method from an n-gonal lattice 
in higher dimensions. When the n-gonal quasilattice is constructed we have assumed 
a single window in the internal space. 

Now, the Penrose lattice associated with a decagonal quasiperiodic tiling due to 
Penrose is obtained from a decagonal lattice in 4~ (Janssen 1986) by assigning windows 
with different shapes, sizes and/or orientations to five sublattices into which the 
decagonal lattice is divided (one of the windows is empty). Several dodecagonal 
quasilattices in 2~ are obtained in similar ways from a hyperhexagonal lattice in 4~ 

(Niizeki 1988a). These quasilattices may be referred to as ‘non-Bravais-type’ quasilat- 
tices, while those in I as ‘Bravais-type’ ones. 

There have been published, however, no methods of systematically obtaining 
‘non-Bravais-type’ n-gonal quasilattices. Moreover, it is not known whether every 
‘non-Bravais-type’ quasilattice has a self-similarity, though all of a few known examples 
do have self-similarity (de Bruijn 1981, Gahler 1986, Niizeki 1988a). The purpose of 
this paper is to present complete answers to these questions. 

An n-gonal lattice ( n  2 8) is a higher-dimensional lattice than three dimensions 
and it is difficult to visualise its geometry. Fortunately, it can be investigated by 
projecting it onto the plane, because a geometrical problem in the plane can be reduced 
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with the use of complex numbers to an algebraic problem, which may be solved by 
powerful methods extensively developed by mathematicians. In this paper, we shall 
use several elementary results in abstract algebra and algebraic number theory and we 
assume the readers to have knowledge of them. For this mathematics, refer to appropri- 
ate textbooks. 

In 0 2, we review the properties of an n-gonal lattice presented in I. We discuss 
also an indeterminacy in the n-gonal lattice. In § §  3 and 4, we present a systematic 
method of dividing an n-gonal lattice into several identical sublattices which are also 
n-gonal lattices. Furthermore, we investigate how the sublattices are transformed 
among themselves by the symmetry elements in the point symmetry of the n-gonal 
lattice. In 0 5 ,  the theory developed in §§ 3 and 4 is applied to several examples. In 
§ 6, a general expression for a 'non-Bravais-type' n-gonal quasilattice is presented and, 
in § 7 ,  it is proved that every 'non-Bravais-type' n-gonal quasilattice has a self-similarity 
characterised by a complex PV unit. In § 8, the theory developed in § §  6 and 7 is 
applied to several important cases. Finally 9 9 is devoted to a discussion. 

The present work can be considered as a generalisation of I and also of the work 
of de Bruijn (1981), Janssen (1986) and Niizeki (1988a). The general theory developed 
in 0 9  3 and 4 and that in 00 6 and 7 will be better understood if referred frequently to 
these works and also to examples presented in § §  5 and 8. 

2. An n-gonal lattice 

Let n ( n  3 4) be an even integer and let r be the rotation of the plane (the two- 
dimensional Euclidean space) E2 by 2 r / n  with respect to the origin. Then, the cyclic 
group C, generated by r is a point group with order n. C, is crystallographic if n = 4 
or 6 but non-crystallographic otherwise. E2 is identified with C, the complex plane, 
E 2 =  C, and then r is equivalent to a multiplication of a complex number 5 = l, = 
exp(2ri /n)  onto C ;  C, ={l ,  5,. . . , l"-'}. 5 is an algebraic integer which satisfies the 
equation P , ( x )  = 0 with P , ( x )  being the n-cyclotomic polynomial. The order of P , ( x )  
is given by 4 ( n )  with being the Eulerian function in number theory. d ( n )  is an 
even integer and we denote m = 4(n)/2.  l has 2m conjugates including itself, l, 
l', . . . , 5 ( 2 m - 1 ) .  We can assume that f . ( m + k )  is the complex conjugate of k = 
0, 1 , . . . ,  m-1. 

Let (lk = ' ( lk ,  ( l ' )k , .  . . , ( l (m- ' ) )k) ,  k = 0, 1, .  . . , m - 1, be m-dimensional complex 
column vectors. Then, they are linearly independent over the real field R. They form 
a set of basis vectors of a 2m-dimensional Euclidean space EZm = C" = CO CO. . . 0 
C. A 2m-dimensional lattice L generated by the 2m basis vectors 

L = {n,ao+ n, ( l ,  + e . . + n2m-1(12m-I  I n k  E 2) 

is an n-gonal lattice, which we will show below. 
Let R = (5, l', . . . , f . (m-l))diag,  i.e. an m-dimensional diagonal matrix whose kth 

diagonal element is given by l(k). Then, R is an unitary matrix satisfying in = I. Its 
action on C" is equivalent to an orthogonal transformation p of E*,,, = C". On the 
other hand, there exists a unimodular matrix R such that f ' k ' ~ ' k '  = u ( ~ ) R ,  where 
U = ( l , l , .  . . , J 2 " - ' )  is a 2m-dimensional complex row vector and the other u ( ~ )  are 
the conjugates of U in the n-cyclotomic field Q ( l ) .  Therefore, we obtain dT=TR, 
where Tis  an m x 2m complex matrix whose kth column is given by Uk, or equivalently, 
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whose kth row is given by u ( ~ ) .  Consequently, p leaves L invariant; pL = L. Moreover, 
each component in C"' is an invariant subspace with respect to cyclic group e,= 
(1, p, . . . , p n - ' } ;  e, acts on the first component C in C"' as C,. 

Let T be the projector which projects EZm -5 C"' onto the first subspace C in C". 
Then 

T ( L )  = ~ ( 5 )  ={no+ n , < + .  . .+ n2,-152m-1 I n k E  Z} 

which is the ring (an integral domain) of all the algebraic integers in Q(t ) .  T is a 
bijection (a one-to-one correspondence) between L and Z ( 5 )  and the two sets are 
isomorphous to each other as 2 modules. Thus, all information in L as a 2 module 
is included in Z (  t). 

We have concentrated so far upon the symmetry of L with respect to p. There 
exists another important symmetry of L; the symmetry, U, acts on each component in 
C"' as the complex conjugate operation, which is geometrically the reflection about 
the real axis. The complex conjugate operation, together with 5 ( = r ) ,  generates D,, 
the dihedral group, which is isomorphous to b,, the group generated by p and U ;  

D, = ~ ( 6 , )  = 6,. Each component in C"' is an irreducible invariant subspace 
against 6,. 

In the case of three-dimensional lattices, a cubic Bravais lattice (e.g. a simple cubic 
lattice) is determined apart from the lattice constant but a non-cubic Bravais lattice 
has an extra indeterminacy. For example, the rhombohedral lattice has the rhombohe- 
dral angle as a free parameter and two rhombohedral lattices with different rhombohe- 
dral angles are not similar. Likewise, an n-gonal lattice has an extra indeterminacy if 
n 2 8 (for the case of the decagonal lattice see Janssen (1986) and also Ishihara and 
Yamamoto (1988)), which we will discuss below. 

Let the ak be the basis vectors of the n-gonal lattice L and assume that D =  
(So, S I ,  . . . , be a non-singular diagonal complex matrix. Then a;  = Dak,  
k = 0, 1, . . . ,2m - 1, are transformed among themselves by p in an exactly same way 
(with R) as the (lk are. In this case, we say L', the lattice generated by the a;,  to be 
&-isomorphous to L. Note that different invariant subspaces in C"' against C, are 
rescaled and rotated arbitrarily by D. 

If D in the last paragraph is real, L' is 6,-isomorphous to L. Even if D is not real, 
L' is virtually 6,-isomorphous to L if D = D i  because L' is, then, invariant against 6,. 

The point symmetry of the n-gonal lattice L is sometimes larger than 6, as will 
be seen in a later section. This is a similar situation to the fact that the simple, the 
body-centred and the face-centred cubic lattices are special cases of a rhombohedral 
lattice in which the rhombohedral angle takes special values. The extra symmetry of 
the n-gonal lattice is not important in the arguments in the subsequent sections. 

3. C, and D, superlattices of an n-gonal lattice 

Let K be a sublattice of an n-gonal lattice L and assume that it is a 2m-dimensional 
Bravais lattice whose origin coincides with that of L. Then, K is mathematically a 
submodule of L. K can be considered, also, to be a superlattice (SL) of L;  a unit cell 
of K contains two or more lattice points of L. 

Let K be a SL of L and assume that p K  = K .  Then, K is called a C, superlattice 
(C, SL) of L. Mathematically, a C, SL is a C, submodule of L. If K is a C, SL, then 
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5J= J with J = T (  K ) ,  so that J is an (integral) ideal of Q(5). For simplicity we assume 
hereafter that the class number of Q(5) is one, i.e. n s 44 or n = 48, 50, 54, 60, 66, 70, 
84 or 90 (Mermin et a1 1987). Then, all the ideals of Q(5) are principal ideals. 
Therefore, J = pZ(5) ,  where p E Z ( 5 )  is a generator of J,  which is determined except 
for a multiplicative factor being a unit in Q(5). 

Let P, F t , . . . > P  ( " - 1 )  be the conjugates of p in Q(5) and let M= 
(p ,  p', . . . , p . Then M yields a regular linear transformation k of Ezm = C". 
Letbk=l; .uk(=Muk),k=O,l  , . . . ,  m - 1 .  Thenr r (bk )=p lk ,k=O,1  , . . . ,  m-1. There- 
fore K ( = n - ' ( J ) )  is generated by the bk.  That is, ,L is the lifted transformation of p 
by 7 ~ ~ ~ .  It follows that K is e, isomorphous to L. This follows also from 
p(bo, bl ,  . . . , b2"-,) = (bo, b,, . . . , b2"-,)R. Note, however, that K is not necessarily 
similar to L; it is similar to L only when J =  T ( K )  has a generator p such that 

Conversely, for any ideal J ( # 0) c Z ( l ) ,  we can define a linear transformation 
of EZm = C" as in above, where p is a generator of J,  and we obtain a C, SL of L, 
i.e. PL. Thus, T is a bijection between the set of all the C, SL of L and that of all the 
integer ideals of Q(5). We shall call a generator of an ideal, also, a generator of the 
relevant C, SL. We shall denote b L  simply as L[p ] .  

Let K be a C, SL of L and assume that a L =  L, then it is called a D, SL. It is 
obvious that a necessary and sufficient condition for K to be a D, SL is that J = T ( K )  
is a self-conjugate ideal of Z (  5) with respect to the complex conjugate operation. Note 
that a self-conjugate ideal is generated by p E Z ( 5 )  such that p = ii, i.e. p is real, or 
p = For example, if n = 4, L is a square lattice in 2~ and L[ 1 + i] is a D4 SL of L 
but L[2+i] is a C, SL of L. 

Let K be a C, SL of L. Then, K is called a prime C, SL if J = T ( K )  is a prime 
ideal in Q(5). On the other hand, if p = mo, a real integer, we obtain bk = moak, 
k = 0, 1 , .  . . ,2m - 1, i.e. L[mo]  = moL. Thus L[mo] is a 'trivial' D, SL of L. 

("-1) diag ) 

IpI = lp'l= . . . = lp(m-i)l .  

4. Division of an n-gonal lattice into sublattices 

Let L be an n-gonal lattice and let K be its C, SL. Then, L is divided into sublattices 
which are identical to K except for translations. The sublattices are specified by the 
elements of the quotient L/ K ;  each vector in L/ K indicates the location of a lattice 
site of L included in a unit cell of K. Since T is a bijection between L and Z ( l ) ,  we 
obtain a bijection between L/ K and A = Z ( l ) / J ,  the residue class ring with respect 
to J. Thus, the sublattices of L are labelled by the elements of A. We shall denote a 
sublattice labelled by A E A as K ( A ) ;  A is equal to ~ ( l )  with I E  K / L  being the vector 
representing sublattice K ( A ) .  In particular, K ( 0 )  = K. We shall denote the mapping 
from Z ( 5 )  onto A = Z ( L ) / J  by I+. Note that I + ( J )  = 0. 

The number of elements in A is given by q = NJ, the norm of J. J is calculated 
with a generator p of J as NJ = pp', . . . , p ( 2 m - 1 )  (=Ipp', . . . , p I ) = N ( p ) .  This 
expression is understood because p, p', . . . , p(2m-i) are the eigenvalues of the integer 
matrix M which relates the basis vectors bk of K with those of L as (bo, b l ,  . . . , b2,_,) = 

Since ~ ( p )  = 5, the equality pL = L is equivalent to @(t) = Z ( 5 )  and p K  = K to 
5 J = J .  Thus, p (or p^= (L(5)) induces an automorphism (a permutation) of K/L (or 
A); the sublattices in L / K  are permuted by p among themselves as p K ( A )  = K(p^A) 
for all A E A .  A is a finite commutable ring and p̂  is an invertible element in A. 

( m - - l )  2 

(a07 a1 3 . . * 9 azm-l)M. 
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We assume hereafter that K is a D, SL of L. Then, the complex conjugate operation 
is an automorphism of both Z ( { )  and J = .rr(K); it is derived from the automorphism 
(T of L and K. The complex conjugate operation induces an automorphism I3 of the 
ring A =  Z ( { ) / J .  Thus, we obtain that a K ( A )  = K ( 6 A )  for all A E A. Two sublattices 
of L are equivalent in L with respect to 6 ,  if they are transformed to each other by 
an element of 6,. 

A is divided by p  ̂ into several disjoint sets as A = Row A I  u.. . v A S P I ,  where 
p^A, = A , ,  i = 0, 1, . . . , s - 1. Mathematically, the A, are the orbits of p  ̂ in A. They are 
irreducible with respect to p^. A ,  is represented as A ,  = {p^kA,  1 k = 0, 1, . . . , q, - 1) where 
A,  is a representative element in A, and q, stands for the number of elements in A, ; 
A. = {0}, which we shall call a trivial orbit. It can be shown easily that 13 induces a 
permutation among the orbits. An orbit is called self-conjugate if it is invariant against 
6. A. and some other A, are self-conjugate. The remaining A, are regrouped pairwise 
into conjugate pairs because &2 = 1. Two equivalent sublattices are labelled by the 
elements in a single orbit or a pair of conjugate orbits. 

L, is divided naturally as L =  L o u  L,  U.  . .U LTp1 with L, =U, K ( A ) ,  A E A, .  Lo=_K 
but other L, are 'non-Bravais-type' sublattices of L. L, is invariant against 6,  or C ,  
according as A, is self-conjugate or not, respectively. All the sublattices in L, are 
equivalent to each other with respect to 6, or e,. 

Let A E A. Then, the isotropy subgroup of 6,  with respect to K ( A )  is defined by 
G(A) = { x  Ix E 6,  and x K ( A )  = K ( A ) } .  G(A) represents the local symmetry in K of a 
lattice point of K ( A ) .  It can be easily shown that G(A) is isomorphous to Dh or Ch 
with h = n/q, according as the orbit A, to which A belongs is self-conjugate or not, 
respectively. In fact, if A and A '  belong to a common orbit, G(A) and G(A') are 
conjugate subgroups to each other in 6,. We shall denote Dh or C h  with h = n/ql as 

If J is a prime ideal then A = Z (  {)/ J is a Galois field of order q, i.e. A = GI=( q ) .  
We shall investigate this case in more detail in the following because the structure of 
A in this case is very simple; besides, this is an important case in the practical 
application. 

q = NJ takes the form q = pf with p being a real integer andf a positive real integer. 
Z is a submodule of Z ( { )  and G F ( ~ )  = Z / ( p Z )  = 2, is a subfield (a prime field) of 
A - G F ( ~ ) .  Since Z ( { )  is generated by 5, we can conclude that A is generated by 
adjoining p ^ ( = $ ( { ) )  onto 2,. In fact, f is the order of p* (as an algebraic number) 
over 2, and 

G(')  

A = 2, (6) = { I ,  + I $  + * * . + 4- I 0 s I, G p - 1) 

(A = 2; as a vector space over Z p ) .  We shall denote the algebraic equation for p  ̂ by 
p ( x ) = O  with p ( x ) = c o + c , x + .  . .+c f - ,Xf - l+x ' ,  c , E Z , .  p ( x )  is an irreducible factor 
of the n-cyclotomic polynomial P , ( x )  modulo Z,, which follows from Pn(l) = 0. p ( x )  
is also an irreducible factor of ko+ k l x + .  . .+ k 2 m - 1 x 2 m - 1  modulo Z,, where the k, are 
the coefficients in the expression + = ko+ k,5+. . .+ k2m--1{2m-1 of a generator p of J. 
This is a consequence of the equality +(+) = 0. Since { = {-I, the action of I3 onto A 
is given by I3 (Io+Zlp^+ . . . + I f - l ( p ^ ) f - ' ) =  I,+l,(p*)-'+ . . . + I f _ , ( p * ) - ' f - l ' .  If f = 1 ,  6 
reduces to 1, the identity transformation. 

Let v = n o + n , l + .  . . + n 2 m - 1 { 2 m - ' ~ Z ( 5 ) .  Then, + ( v ) = n o + n , b + .  . .+n,,-,p 
is represented uniquely as Lfo+ zip^+. . . + Lff-lp^f-', where Lt'! = Lt'z (no, n,  , . . . , n2nl-l), 
i = 0, 1, . . . ,f- 1, are linear forms with respect to the n,. The coefficients of the linear 
forms belong to 2, and are determined by the coefficients of p ( x ) .  Thus, we may write 

42m-1 
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the sublattice K ( A )  with A = l o + l , p ^ + . . . + I f - l ~ f - l  as 
K ( A )  = {Tn 1 n E 22m and Zi(n) = li mod p ,  i = 0,1, . . . , f - 1) 

where T= ( a o ,  a , ,  . . . , aZm- , )  is an m x 2m matrix and n a column vector. 
We shall close this section by noting that a division of an n-gonal lattice into several 

equivalent interpenetrating sublattices induces a similar division of an n-gonal quasilat- 
tice obtained from the n-gonal lattice. 

5. Several examples for the division of an n-gonal lattice into sublattices 

We consider only division of an n-gonal lattice L with respect to a prime D, SL of L. 
In this section, I always denotes an odd prime number. 

5.1. The case of n =2J with j 2 2  

If n = 2', then m = n/4 and 2m = n/2. In this case, the ak are orthogonal to each other. 
Therefore, L is a square lattice if n = 4 but otherwise a simple hypercubic lattice in 
n/2 dimensions. 

J -  1 is a prime integer in Q ( J )  and N ( 5 -  1) =2 .  Then q = p  =2,  f = 1 and A-2,. 
Since 6=1,!1(5)=1 (p (x )=x-1 ) ,  we obtain Z O ( n ) = E i  ni. Thus, L = L o u L ,  with 

k = 0 ,  1. 
I I Lk = { niai In E Z2" and Z,,(n) = k mod 2 

Lo and L,  are interpenetrating face-centred hypercubic lattices in 2m-dimensions (or 
square lattices in 2 ~ ,  if n = 4). 

It follows that an octagonal quasilattice is divided into two interpenetrating sublat- 
tices. The relevant tiling consists of square tiles and rhombic tiles (Ishihara e? a1 1988) 
and the four vertices of each tile belong alternately to the two sublattices. 

5.2. The case of n =21 

If n = 21, then m = ( I  - 1)/2, 5' = -1 and J'-' - J ' -2+.  . . + 1 = 0. I +  1 is a prime integer 
in Q(5)  and q = N ( J +  1) = 1. Therefore, p = 1, f = 1 and A =  2,. Moreover, we obtain 
Z o ( n )  = Zl ( - l )h i  because p̂  = -1. Thus, L can be divided into 1 sublattices which are 
labelled by the elements in 2,. Since p̂  = -1, we obtain that s = (1 - 1)/2, Ak = {k,  - k }  
and G ' k ' = D l ,  k = l , 2  ,..., s-1.  

is a triangular lattice which is divided into another three identical 
triangular lattices whose lattice constant is 8 times that of the original lattice, where 
&= 15+ 11. The axes of the triangular lattice, Lo ( = K ) ,  are rotated by arg(5-t 1) = 30" 
from those of L. L ,  = K ( 1 ) u  K(-1) is a honeycomb lattice. The C6 SL of L are 
investigated in some detail in Mitani and Niizeki (1987). 

On the other hand, if 1 = 5 ,  L is a decagonal lattice, which can be divided with 
K = L[5+ 11 into five decagonal sublattices labelled by the elements in A =  
{-2, -1,O, 1,2}. K is not similar to L. 

If 1 = 3 ,  L (= 

5.3. The case of n =41 

If n = 41, then m = 1 - 1. In this case, the ak with even k and those with odd ones form 
respectively two 21-gonal lattices in m/2  dimensions. The two lattices are orthogonal 
to each other in E2m.  Thus, L ( =L(4')) = L'2') x L'"'. 
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We shall consider the case of 1 = 3 in more detail. In this case, L is a hyperhexagonal 
lattice; L= L,x L, with LT (=L(6))  being the triangular lattice. If p = 1 +13 (=a exp(r i /4)) ,  we obtain q = 4, so that p = 2 , f =  2 and A = Z2(p^) with 6'- b+ 1 = 0. 
Moreover, we obtain z 0 ( n )  = no+ n2+  n, and T , ( n )  = n, + n2. Since I '  = -5, we obtain 
lpl= Ip'/ = a. Therefore, K = L[ 1 + 4",] is similar to L, i.e. K is another hyperhexagonal 
lattice whose scale is times larger than L. L is divided with K into four identical 
sublattices, which interpenetrate into each other. A is divided into Ao={O} and 
A, = {l,p^, b2}, so that L = L o u  L ,  . Note that G") = D4. 

If p = I+ I-' (=a), we obtain q = 32, so that p = 3 and f = 2 .  We denote p  ̂ as i 
because p*'= -1; then A = Z3(i). It follows that Z0(n) = no- n, and T l ( n )  = n, - n,. 
K = L [ a ]  is another hyperhexagonal lattice, whose lattice constant is times that 
of L. Thus L is divided into nine identical hyperhexagonal lattices. This division is, 
alternatively, derived by dividing the LT in L = LT x LT into three triangular sublattices 
as presented in 0 5.2 (Niizeki 1988a). 

A is divided into three orbits; the two non-trivial orbits are A k =  
{Ak, ;AJLk, b2&, ; , A k } ,  k = 1,2,  with A ,  = i and A 2  = 1 +i.  G") = G(2) = D,. Thus L is 
divided into three sublattices Lo, L ,  and L2.  It can be shown that L2 is a direct product 
of two honeycomb lattices in 2~ (Niizeki 1988a). 

Most of the results for the case of 1 = 3 can be extended to the other 1. 

6. A 'non-Bravais-type' quasilattice 

Let L be an n-gonal lattice ( n  2 8) and assume that Elm = C"' = CO CO. . .O C is a 
division of E,,,, into irreducible subspaces with respect to the point symmetry f i n  of 
L. Then we begin by dividing C"' into the internal space and the external space as 
C"' = CO Cm-l ,  respectively, where C, the external space, is the first component in 
C" and C"-' is the orthogonal complement of C in C". Both the spaces are invariant 
subspaces of C"' against 6,. C is irreducible but C"-' is reducible unless m = 2 .  We 
shall denote the restrictions of p and U to Cm-' by p' and U',  respectively. p' and (T' 

generate a point group DL = D,. 
We next divide L into sublattices K ( A )  in terms of K,  a D, SL of L. We assign to 

each sublattice K ( A )  a 'window' W ( A ) ,  which is a convex polygon (or polytope if 
m > 2 )  or a star-like polygon (or polytope) in the internal space Cm-' .  We assume 
that the windows are related to each other by p 'W(A)  = W ( $ )  and U' W ( A )  = W ( 6 A )  
for all A E A. Then, W (  A ) has to be invariant against G( A ). The centre of the symmetry 
of W(A) is the origin in Cm-'. Let A, = {pAkA, 1 k = 0, 1, . . . , q, - 1) be the ith orbit in 
A. Then, we obtain W(bkA,)  = plkW,, k = 0, 1, . . . , q, - 1, with W ,  = W(A,) .  Thus, the 
q, windows are congruent with each other but they differ from each other only in their 
orientations in the internal space. Note that, if A ,  is conjugate with A,, W, is congruent 
with W, but, otherwise, W, and W, are irrelevant to each other. The point symmetry 
of W ,  is given by G'". 

We can now construct with the projection method an n-gonal quasilattice whose 
macroscopic point symmetry is equal to D, : 

L d + , { W } ) =  U {.rr( t ) lZEK(A)and.rr ' ( t )Eqb+ W(A) l  (6.1) 

where IT' is the projector from C" onto C"'-', { W }  = { W O ,  W , ,  . . . , WS-,}, and qb is 
an arbitrary vector, so-called phase vector, in C"'-'. Note that the phase vector has 

AEA 
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to be chosen in common among different sublattices. Two quasilattices with a common 
{ W }  but with different phase vectors belong to the same local-isomorphism class (LI 

class). 
If WO = W ,  = . . . = Ws-l, LQ(4, { W } )  reduces to a ‘Bravais-type’ n-gonal quasilat- 

tice investigated in I. If all the windows except WO (= W ( 0 ) )  are empty, LQ(4,  { W } )  
is also a ‘Bravais-type’ n-gonal quasilattice, which is obtained from K with the 
projection method. Except for the two cases, L,( 4, { W } )  is a ‘non-Bravais-type’ 
quasilattice. 

The quasilattice given by (6.1) is divided naturally into sublattices as 

( 6 . 2 ~ )  

Lg’(4,  W , ) =  U { r ( z ) l z € K ( A ) a n d r r ( z ) € 4 +  W(A)} .  (6.2b) 

Lg’(4,  W , )  is a quasilattice whose point symmetry is D, or C ,  according to whether 
A ,  is self-conjugate or not, respectively. Lg’( 4, W , )  is considered to be obtained from 
L, with the projection method. 

If W ,  is empty, so is Lt’(4,  W, ) .  Thus, LQ(#, { W } )  as given by ( 6 . 2 ~ )  is a union 
of the ~ g ’ ( 4 ,  wk) with the wk being non-empty. If two or more wk are non-empty, 
we may call L,( 4, { W } )  a heterotic quasilattice, while calling Lg’(4,  W , )  ( i  # 0) a 
‘homopolar non-Bravais-type’ quasilattice. 

A E A ,  

7. Self-similarity of a ‘non-Bravais-type’ n-gonal quasilattice 

We have shown in I that self-similarity of a ‘Bravais-type’ n-gonal quasilattice is 
characterised by a complex PV unit T ;  a Pv-unit is a unit in Q(5) and satisfies the 
conditions: (i)  I T (  > 1 and (ii)  IT(^)^< 1, k = 1,2, .  . . , m - 1, with dk’ being the kth 
conjugate of T in Q(5). 

Since T Z ( ~ )  = Z ( s ) ,  T induces an automorphism of Z ( 5 ) .  It can be lifted by T-’ 
to an automorphism i of the n-gonal lattice L ( = r - ’ ( Z ( l ) ) ) .  F is a linear transforma- 
tion of Ezm ( = C m )  and represented by an m-dimensional complex diagonal matrix 
?= ( T ,  T’, . . . , T ( ~ - ” ) ~ ~ ~ ~  which acts onto C“‘. i is volume conserving because 
177’. . . T ( ~ - ’ ’ / ~  = N ( T )  = 1, which follows from T,  7 - l  E Z ( 5 ) .  Thus, Facts on the external 
space C as a homogeneous similarity transformation which is expansive, while it acts 
on the internal space Cm-’ as a contractive linear transformation ?. 

Let K be a D, SL of L. Then, i and T induce automorphisms of K and J = T( K ) ,  
respectively. Therefore, the automorphisms induce an automorphism 4 = +( T )  of the 
quotient, L/ K = Z (  l ) / J  = A. 4 is an invertible element in A and it acts multiplicatively 
on A. Thus, we obtain T K ( A )  = K(?A)  for all A E A .  

Since A is a commutable ring, we have 64 = $6, which follows, alternatively, from 
p i  = ;p. Therefore, 4 (or i) induces a permutation among different members in the 
division A = A o u A , u  . . .  uA,- ,  (or L = L o u L , u  . . .  uL,-,). If < A , = A , ,  it is 
necessary that q, = q,. On the other hand, if FA, = A , ,  T induces a permutation among 
the elements in A , .  

Multiplying T onto the both sides of equation (6.1) and making a similar manipula- 
tion to those in I and Niizeki (1988a), we can show that T L ( ~ ,  { W } )  c L ( 7 4 ,  { W } )  if 
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i ’ W ( h )  c W(6A) for all A E A, which is a necessary and sufficient condition for 
L($,  { W}) to be self-similar with respect to an inflation by r. We consider first the 
case of L($,  { W}) = Lg’($, W,), i.e., the case where all the windows except W ,  are 
empty. In this case, it is necessary that 6A, = A , .  If ?A, # A , ,  we redefine T~ to be T,  

where k is the least non-zero integer satisfying GkA, = A , .  Then, it is necessary and 
sufficient that i’W(A,) c W(GA,) with A,  being a representative in A , .  This condition 
is satisfied if W, is sufficiently close to a (2m - 2)-dimensional sphere. If the condition 
is not satisfied, we can redefine some power of T to be T so that the condition is satisfied. 

We next consider the general case. In this case, it is necessary that the permutation 
induced by 6 among the orbits A, is closed among those to which non-empty windows 
are assigned. Even if this condition is satisfied, the condition iW(A) W(6A) will not 
be satisfied for A E A, if A ,  is transformed by 6 to a different orbit A, and W, is too 
small compared with W,. In any case, the condition is always satisfied, if we redefine, 
when necessary, some power of T to be T. Thus, we can conclude that every ‘non- 
Bravais-type’ n-gonal quasilattice has a self-similarity characterised by a PV unit T in 
Q ( 5 ) ;  the inflation rule is to narrow the window W(A) to ?W((G)-’A) for all A E A. 
Note that the condition of a PV unit in Q ( l )  to be a complex self-similarity ratio of a 
‘non-Bravais-type’ quasilattice is stronger than that in the case of a ‘Bravais-type’ 
quasilattice. 

8. Several applications of the theory 

8.1. The Penrose lattice and the anti-Penrose lattice 

If n = 10, then m = 2 and the internal space as well as the external space is two 
dimensional. We have divided in § 5.2 a decagonal lattice in 4~ into five sublattices 
labelled by A = Z5 = { -2, - 1, 0, 1,2}. p  ̂ = - 1 and A is divided into three orbits. A. = {0}, 
A,={l ,  - l}andA2={2,  -2}. Moreover,G“=D,oandG“’=G‘2’=D5. From$= -1, 
we obtain p’W(A) = W(-A), A = 1,2, where p ‘ =  l’= 13. On the other hand, CT’ rep- 
resents the reflection with respect to the real axis and the condition d W ( A )  = W(A) 
has to be satisfied for all A E A because c? = 1. 

T = [+ I-’ ( = (1 + 8 ) / 2  = T ~ )  is a PV unit in Q ( l ) ,  I =  ll0, and its conjugate in 
Q ( l )  is T‘ = l3 + 1-3 (=( 1 - d ) / 2  = - l / r ) ,  which acts multiplicatively onto the internal 
space. Since 4 = p* + -2, the two orbits A, and h2 are interchanged by 6 but they 
are left invariant by G2 = -1 mod 5 .  

The Penrose lattice is obtained when W ( l )  and W(2) are pentagons with different 
sizes, while W(0) is empty. The two pentagons are related by W(l )  = - ( 1 / ~ ~ )  W(2) 
(=7’W(2)) (de Bruijn 1981, Janssen 1986). This choice of the windows conforms 
perfectly to the general theory in $ 6 .  The condition T’ W(A) c W(-2A) is satisfied by 
all A E A, so that the self-similarity ratio of the Penrose lattice is given by T~ (de Bruijn 
1981). 

The original Penrose lattice is heterotic and is divided into two ‘homopolar’ 
decagonal quasilattices L(p’ and L r )  as shown in figure 1. Since h2 = $A,, and 
7’W(f2)= W(Tl) ,  we can conclude that LL2) is similar to Lv’ with ratio r. L2 is 
composed of two sublattices and L(p2) is divided into two interpenetrating sublattices; 
the ten vertices of a decagon embedded in the network L r )  as given in figure 1 belong 
alternately to the two sublattices. The self-similarity ratios of Lv’ and L(p2’ are not 
equal to rG but to T: because 6 interchanges AI and h2. 
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Figure 1. The Penrose lattice is divided into two decagonal quasilattices L g )  (broken lines) 
and L6f' (full lines), which are similar. LL2) (or L;')) contains even-membered rings only 
and is divided further into two interpenetrating sublattices. 

If we assign a decagon, a truncated pentagon and a small pentagon to WO, W, and 
W,, respectively, as presented by Pavlovitch and KlCman (1987), we obtain a decagonal 
quasilattice, which yields a tiling with the same kinds of rhombic tiles as in the Penrose 
tiling. In this anti-Penrose lattice, W2 is so small that the condition T' W(A) c W(-2A) 
is not satisfied by A = 1 2 .  On the other hand, T ' ~  W(A) c W(-A) for all A E A. There- 
fore, the self-similarity ratio of the anti-Penrose lattice is not TG but &. We show in 
figure 2 the anti-Penrose tiling and its inflated version with the ratio T&. 

It can be shown by similar arguments to those in this subsection that a Penrose-type 
and an anti-Penrose-type 14-gonal quasilattices obtained as dual lattices of heptagrids 
(Niizeki 1988b) have self-similarity with ratio T ~ ,  where T = 1 + 2 c o s ( 2 ~ / 7 )  is a PV unit 
in Q(lI4)  presented in I. 

8.2. The Penrose-type and the anti-Penrose-type dodecagonal quasilattices 

The internal space in the case of n = 12 is also two dimensional. In 0 5.3, we have 
divided L = L('*), the hyperhexagonal lattice in 4 ~ ,  into nine sublattices labelled by 
A = ZJi) with p  ̂ = i and then the elements in A are regrouped into three orbits. A I  
and A, are self-conjugate orbits with four elements. G(O) = D 12 and G(') = G(2)  = D 3 9  

representing the point symmetries of WO = W(O), W, = W( 1) and W2 = W( 1 + i), respec- 
tively. 

T = 1 + 5 (= T~ exp(.rri/ 12), T~ = 2 cos( 7r/ 12) = (&+ 1)/Jz) is a complex PV unit in 
Q ( f )  with J =  f l z  and its conjugate in Q(5) is T ' =  1 - 5  ( = ( T ~ ) - '  exp(-5ri/ l2)) ,  which 
acts multiplicatively onto the internal space. f = 1 + i  interchanges A, and A2 but 
f2 (= -i mod 3) leaves them invariant. 
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Figure 2. The anti-Penrose tiling (full lines) and its inflated version (broken lines) with 
the ratio T&. 

L2 is a hyperhoneycomb lattice in 4~ and self-similarity of a homopolar dodecagonal 
quasilattice, Lg’(4, Wz) ,  obtained from L2 is fully discussed in Niizeki (1988a), which 
is one of the motivations of the general theory in this paper. 

If the quasilattice mentioned in the last paragraph is joined with L$’(+, W,) with 
W, being an equilateral triangle, we obtain a heterotic dodecagonal quasilattice (Niizeki 
1988a), which can be obtained, alternatively, with the projection method from Lgi, a 
simple hypercubic lattice in 6 ~ .  We may call this a Penrose-type dodecagonal quasilat- 
tice because an empty window is assigned to WO as in the case of the decagonal Penrose 
lattice. This quasilattice cannot be inflated with T = 1 + because W, is too small 
compared with W, . The self-similarity ratio of this quasilattice is T ;  (= L-’T’) = 2 +a. 

I ! 

i 

WO w, w2 

Figure 3. The windows WO ( a ) ,  W ,  ( b )  and W, (c)  given in lines yield the anti-Penrose-type 
dodecagonal tiling with rhombic tiles only. The chain lines denote the x (Re z )  and y 
(Im z )  axes of the internal spaces. The radii (of the circumscribing circles) of WO, W, and 
W, are  AT^, d~~ and T ~ ,  respectively. On the inflation, the windows are narrowed as 
presented in broken lines; the roles of W, and W, are interchanged. 
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Figure 4. The anti-Penrose-type dodecagonal tiling obtained with the windows in figure 3 
(full lines) and its inflated version with the complex ratio 1 + (broken lines). 

We now turn to the anti-Penrose-type dodecagonal quasilattice, which is obtained 
by assigning a dodecagon, an equisided trigonal nonagon and a trigonal hexagon to 
WO, W, and W,, respectively, as shown in figure 3. The sides of the three polygons 
have a common length, &/2, and the smaller inner angles of W, and W, are 120” and 
go”, respectively. This heterotic quasilattice yields a dodecagonal tiling with three 
kinds of rhombic tiles. It can be obtained also from a simple hypercubic lattice in 6~ 

(Ishihara et a1 (1988), see also Yang and Wei (1987)). It has an inflation with the 
complex ratio T = 1 + 5 because W, (= W (  1 + i)  = W ( $ ) )  can narrowly accommodate 
T’ W,  (= T’ W (  1)) as shown in figure 3. We show in figure 4 the dodecagonal tiling and 
its inflated version. 

9. Discussion 

The main applications of our theory are, in this paper, only to the anti-Penrose lattice 
(decagonal) and the anti-Penrose-type dodecagonal lattice, which were constructed 
previously (JariC 1986, Pavlovitch and KlCman 1987, Ishihara er a1 1988, Niizeki 1988a) 
but whose self-similarity has not been fully investigated yet. Applying the present 
theory, we may construct a variety of new ‘non-Bravais-type’ n-gonal quasilattices. 
For example, we obtain a new dodecagonal quasilattice on the basis of the division 
of the hyperhexagonal lattice into four sublattices as presented in 5 5.3. These results 
will be published elsewhere. 

The present method of constructing a ‘non-Bravais-type’ quasilattice is quite general. 
However, a ‘non-Bravais-type’ quasilattice is usually constructed with the projection 
method from a lattice in higher dimensions than 2m (=c$(n)) (de Bruijn 1981, JariC 
1986, Pavlovitch and KlCman 1987, Ishihara er a1 1988) or with the grid method (de 
Bruijn 1981, Gahler and Rhyner 1986, Niizeki 1988b) which is equivalent to the 
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projection method (Gahler and Rhyner 1986). The relationship between the two 
methods will be discussed in a separate paper. Note, however, that it is difficult to 
show self-similarity of a ‘non-Bravais-type’ quasilattice by the approach of starting 
from a higher-dimensional lattice (Gahler 1986). 
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